

Center for Research Libraries
Auditing and Certification of Digital Archives Project

LOCKSS Audit Report

November 2007

Report prepared by Robin Dale, with contributions by Bernard Reilly and Marie Waltz.

Note: This report was produced as part of a test of the
RLG/NARA Draft Audit Checklist for the Certification of
Trustworthy Digital Repositories and other metrics developed by
the Center for Research Libraries under a grant from the Andrew
W. Mellon Foundation. Because the metrics and methodologies
applied were still in development at the time of the audit, this
report should not be considered a definitive assessment of the
repository described.

TABLE OF CONTENTS

1 SUMMARY STATEMENT..2
2 EXECUTIVE SUMMARY ...4
3 FULL REPORT...6

3.1 INTRODUCTION ...6
3.1.1 LOCKSS system & background..6
3.1.2 LOCKSS Philosophy...7
3.1.3 Organizational Structure (Brief Overview) ..8
3.1.4 Technical Architecture (Brief Overview) ...9

3.2 OBJECTIVES, SCOPE, & METHODOLOGY...11
3.2.1 Scope..11
3.2.2 Method of Work...11
3.2.3 Standards against Which the Audit Was Completed..11

3.3 FINDINGS ..12
3.3.1 Organizational Analysis ..12
3.3.2 Content Analysis ...18
3.3.3 Technical Analysis ..22
3.3.4 Vulnerabilities..29
3.3.5 Final Observations and Recommendations..30

i

1 Summary Statement

The audit of the Lots of Copies Keeps Stuff Safe (LOCKSS) open source software system and
the accompanying LOCKSS program based at Stanford University, took place over the course of
two months, between September and October 2006, with a brief review and update in January
2007. Further clarification of some points was solicited and received from LOCKSS in
November 2007. The goal of the audit was to form an overall risk analysis of the LOCKSS’
software and system’s ability to provide long-term access to scholarly electronic journals and
other digital resources. LOCKSS was evaluated on three aspects of the program’s operation:

a. characteristics of the archiving software that affect performance, accountability, and
business continuity of LOCKSS collections;

b. technologies and technical infrastructure employed by the archiving software; and
c. processes and procedures enabled by the software and implemented at local LOCKSS

participating institutions.

This “sidewalk audit” differed from the other audits conducted by CRL as part of the same
project. Unlike the 2006 audits of the e-Depot at the Koninklijke Bibliotheek, Portico, and
ICPSR, the LOCKSS audit did not involve an on-site visit by CRL auditors. This was in part
because LOCKSS is a distributed system, rather than a central repository. In addition it was not
possible within the time frame of the CRL project to arrange a time mutually acceptable to
LOCKSS and CRL for the prescribed two-day, on-site session.

Hence this report is based primarily upon publicly available documentation, information from
publications and presentations about LOCKSS by a member of the LOCKSS team, information
and documentation obtained from libraries utilizing the LOCKSS software, and information
provided by Victoria Reich, Director of the LOCKSS Program.

The audit did reveal a robust, low cost Open Source software system, which at the time of the
audit was used to preserve primarily electronic journals in more than 100 institutions. As an e-
journal archiving system, the software functions as intended and is widely used to preserve and
provide persistent access to e-journal content. This core functionality has been tested and
validated through myriad minor, anticipated failures such as network access interruptions, data
corruption, and individual LOCKSS box failure. In all instances of which the auditor was aware,
the individual LOCKSS boxes performed as anticipated and content and/or access was
automatically restored.

Moreover, the system is decentralized; allowing local custody and control of comprehensive
copies of journal content by participating institutions and thus avoids a single point of failure.
The system also continually monitors and validates archived content, providing high assurance
of the continued presence and integrity of that content.

Concerns include the present “migration on access” strategy and the public perception that
LOCKSS can be used as a digital preservation system for any and all types of Web-based digital
content. The chief concern raised by the audit, however, was the sustainability of the LOCKSS

2

Program and LOCKSS Alliance. Although the Alliance was formed to provide stability and
financial support for the LOCKSS Program, at the time of our audit it had yet to reach
subscription levels that would allow long-term sustainability. Recent developments at LOCKSS,
however, suggest that the service could soon become self-sustaining. It was not possible on the
basis of the information provided for the auditor to render an informed assessment of LOCKSS’
prospects for economic sustainability.

In concept and in practice, the LOCKSS system has proved to be an effective approach to
preserving Web-based content. While not the only option enabling persistent access to Web-
based collections, it is one of the few that allows institutions -- especially smaller ones—local
capture and control of the resulting digital collections.

3

2 Executive Summary

In March 2005, the Andrew W. Mellon Foundation funded the Center for Research Libraries
(CRL) Auditing & Certification of Digital Archives project, an endeavor to develop an audit and
certification process for digital repositories and archives. Rigorous auditing and certification are
necessary to determine the level of assurance that particular archiving arrangements provides to
publishers/depositors and users, and to ensure that the valuable digital resources archives will
continue to be available and functional over the long-term. As a part of the CRL project, Project
Director Robin Dale performed a “sidewalk” audit and assessment of the Lots of Copies Keeps
Stuff Safe (LOCKSS) open source software system as well as its organizing bodies, the
LOCKSS Program and LOCKSS Alliance.

Among the goals of this audit was to evaluate LOCKSS to form an overall risk analysis as it
relates to long-term access to scholarly electronic journals and other digital resources being
managed by LOCKSS software. The audit of the various components of LOCKSS took place
over the course of two months, from September – October 2006. A brief review and update took
place in January 2007, and further clarification of some points was solicited and received from
LOCKSS in November 2007.

This “sidewalk audit” differs in methodology and scope from the other test audits, and is not as
rigorous. The assessment is based primarily upon publicly available documentation about
LOCKSS, including information from the LOCKKS Website, publications or presentations about
LOCKSS provided by a member of the LOCKSS team, and documentation produced by projects
utilizing the LOCKSS software. The audit also involved extensive interviews with the director of
LOCKSS, Victoria Reich.

Audit findings revealed a robust, but low cost Open Source software system used to preserve
primarily electronic journals in more than 100 institutions. Moreover, the LOCKSS system is a
decentralized one, allowing individual participating libraries to maintain local custody and
control of a comprehensive set of copies of journal content. The LOCKSS software is also open
source and thus can be maintained by participating institutions, thus avoiding a single point of
failure. The system also continually monitors and validates archived content, providing high
assurance of the continued presence and integrity of that content.

The LOCKSS system is also being used in a variety of projects to test its use and capability to
preserve private networks of Web-based content (although not necessarily e-journal content).
Further development and testing to support this new functionality were ongoing and taking place
both in cooperation with LOCKSS staff, and within the broader open source community.

Designed as a system incorporating a risk-based, economical approach to persistent access to
certain content types, LOCKSS appeared to function well. As an e-journal archiving system, the
software functioned as intended and at the time of the audit was in use to preserve and provide
persistent access to e-journal content. This core functionality has been tested and validated
through a myriad of minor though anticipated failures such as network access interruptions, data

4

corruption, and individual LOCKSS box failure. In all instances of which the auditor is aware,
the individual LOCKSS boxes performed as anticipated and content and/or access was
automatically restored. This is one of the only archiving systems to experience and recover from
anticipated, real-time failures.

The audit found that LOCKSS tends to be most effective when applied to archiving e-journal
content. Uses of LOCKSS as a specialized preservation network of other Web-based content
were underway at the time of the audit, but it would be premature to render judgment on
LOCKSS functionality for that purpose. As long as other uses of LOCKSS conform to its
intended functionality (generally preserving static, Web-based materials that can be rendered by
Web browsers), experiences similar to e-journal archiving with LOCKSS software should be
anticipated.

Despite LOCKSS wide distribution and success to date, a few concerns emerged during the
course of the audit. These include LOCKSS’ “migration on access” or “migration on demand”
strategy. This strategy has been demonstrated for images through a proof-of-concept test, but
may prove much more difficult and costly for other formats. However, the LOCKSS team has
expressed their intention to consider incorporating functionality with emerging format registries
that provide links to registered format converters, when such registries are available for
production use, potentially saving time and the expense of other potential solutions.

The chief concern raised was the economic sustainability of the LOCKSS Program and LOCKSS
Alliance. Although the Alliance was formed to provide stability and financial support for the
LOCKSS Program, at the time of the audit it had yet to reach annual revenue levels that will
guarantee long-term sustainability. LOCKSS Alliance membership (and corresponding dues)
will have to increase well beyond their 2006 level to support the LOCKSS Program and its
dedicated support and developmental staff.

Although the LOCKSS software is Open Source and the Open Source community has been
encouraged to take on and/or contribute to ongoing LOCKSS development, a sizable, interested
community had not yet materialized at the time of the audit. LOCKSS recently reported,
however, that in 2007 the Alliance generated sufficient income to “cover all the LOCKSS-related
activities of the Stanford team.” If such a development proves persistent it would suggest that
LOCKSS has become self-sustaining, independent of grants and other soft money subsidies -- a
very promising development.

In concept and in practice, the LOCKSS system has proved itself to be a solid approach to digital
preservation of Web-based content. While it is not the only option enabling persistent access of
Web-based collections, it is one of the few that affords institutions -- especially smaller ones—
onsite capture and control of the resulting digital collections. Its low-cost, automated, digital
preservation process should be considered a viable option for institutions wanting to collect and
preserve materials appropriate to the LOCKSS software design.

5

3 Full Report

3.1 Introduction
As a part of the Center for Research Libraries Auditing & Certification of Digital Archives
project, Project Director Robin Dale performed an audit and assessment of the LOCKSS (Lots of
Copies Keeps Stuff Safe) archiving software, as well as the supporting LOCKSS program based
at Stanford University. The Andrew W. Mellon Foundation-funded project is engaged in
developing a complete audit and certification process for digital repositories and archives.
Rigorous auditing and certification are necessary to determine the level of assurance that
particular archiving arrangements provide to publishers/depositors and users, and to ensure that
the valuable digital resources archives will continue to be available and functional over the long-
term. As a component of the project, the LOCKSS archiving software capabilities and the
supporting LOCKSS Program were assessed through a “sidewalk audit” – an audit which
utilized public information about the software in addition to extensive interviews with LOCKSS
Director, Victoria Reich, rather than a two-day onsite audit to complete the process. The results
of that test audit are the subject of this report.

3.1.1 LOCKSS system & background
Unlike other test audit subjects in the project, LOCKSS is not a digital repository. Rather,
LOCKSS is software written to function on standard desktop computers as a digital preservation
system or digital preservation “appliance.” The LOCKSS system software is managed and
distributed by the LOCKSS Program based at Stanford University. Conceptualized in the late
1990s, the software was designed to address the then-emerging set of problems associated with
libraries transitioning from purchased journals to leased e-journal content. At the time, it was
difficult to obtain local copies of e-journal content, even for back-up purposes. Additionally,
even if an institution was able to secure back-up copies of content as a part of the licensing
agreement, there was little local capability to reliably load and manage the material in case
access to publisher content was interrupted. To address these related problems, LOCKSS was
conceived to enable librarians to have an “easy and inexpensive way to collect, store, preserve,
and provide access to their own, local copy of authorized content they purchase.”

The technology development and original system coding began in 1999 at Stanford. At its core,
the LOCKSS software is the foundation of a seemingly simple, yet sophisticated peer-to-peer file
system that stores and consistently verifies and updates Web caches. Each physical unit –
referred to as a LOCKSS box -- runs on a fairly low-cost, mid-range computer in which the
LOCKSS software is installed. The LOCKSS box then functions as a server to obtain content
from appropriate Web sites (generally publisher Web sites which contain the content to which
the institution subscribes), store the content, and interact with other LOCKSS boxes. This
interaction among other LOCKSS boxes within the greater LOCKSS network is designed to
enable a polling, verification, and replication mechanism that is one of the keys to LOCKSS data
preservation. In essence, LOCKSS boxes within a defined network poll each other and compare
content. If content is found to be damaged or missing from a particular box, the software can
obtain and/or repair the missing or damaged content. The key here is that multiple copies of

6

content are stored widely in a distributed fashion and then systematically and repeatedly verified
against each other. A fairly sophisticated polling system manages this process and based on
many comparisons of the replicated content, can detect a copy or copies which are different from
its peers and intervene in an appropriate way to restore authentic, valid content. Access to the
stored content is not “granted” unless a specified “trigger event” occurs, generally the loss of
access to the content through the normally specified access point (i.e., a publisher’s Website).

In the intervening years, LOCKSS technology has undergone testing and further development.
The alpha test ran through 2000, and an early beta version was successfully deployed to 50
libraries worldwide between 2000 and 2002. Testing and development continued with partners
from 2002-2004 and LOCKSS was released for production use in April 2004. Until 2004, the
LOCKSS Program endorsed its use primarily for its intended purpose: enabling libraries to
obtain and store local copies of content which libraries purchase, but which are normally
accessed through publisher Websites. In 2004 however, several projects, including the
MetaArchive project1 and the ASERL Electronic Thesis and Dissertation Project2, began to test
LOCKSS as a tool for preserving content other than e-journals. Exploiting the principle of
capturing content from the Web and utilizing Web caches as backups, these new projects use
LOCKSS to capture other Web-based materials and preserving it in dedicated LOCKSS
networks. Further projects, such as the Alabama Digital Preservation Network recently adopted
such LOCKSS networks to create special “collections” of important Web-based content.

During this same time, the LOCKSS Program began further development to support its assertion
of being a digital preservation system. By early 2005, LOCKSS programmers had designed and
tested an initial implementation of format migration (migration on access) for Web content being
managed by LOCKSS boxes.3 This proof of concept migration strategy was a solid step towards
proving that content managed by LOCKSS boxes would not only be available, but would
continue to be renderable over time.

In parallel to system development LOCKSS Director, Victoria Reich, has worked with
publishers to develop and obtain agreements allowing local system implementations of LOCKSS
(“LOCKSS boxes”) to capture e-journal content directly from publishers’ Websites. These
agreements will permit the development of further content-specific plug-in modules that drive
the processes of collecting, preserving, and providing access to specific e-journals since each
online publishing platform requires a separate module.4 In 2006, Reich announced the formation
of the CLOCKSS – Controlled LOCKSS – Initiative which is a direct partnership between
publishers and libraries to implement a community maintained, dark archive, of participating
publishers’ content.

3.1.2 LOCKSS Philosophy
The purpose of LOCKSS is to preserve scholarly literature published in electronic form and to
ensure that these materials remain accessible to future generations of scholars, researchers, and

1MetaArchive <http://metaarchive.org/>
2 Association of Southeastern Research Libraries (ASERL) <http://www.aserl.org/>
3 David Rosenthal, et al. “Transparent Format Migration of Preserved Web Content.” D-Lib Magazine 11:1 (January
2005).
4 LOCKSS: A Distributed Digital Archiving System: Progress Report for the Mellon Electronic Journal Archiving
Program. Stanford, CA: Stanford University Libraries, 8 October 2002.

7

students.5 It intends to provide “effective preservation” of the archived content and provides end
user access to content in a limited set of situations (see Section 2.3.2.3, Usability of Information).

The LOCKSS Program is also motivated by a fervent belief in keeping content in the possession
of the academic institutions rather than under the control of publishers or third-party archiving
operations. LOCKSS was intentionally designed to enable libraries not only to obtain copies and
archive materials, but also to have immediate access to them in the event of an authorized trigger
event, large or small. This approach differs from other archiving and access models such as that
of Portico or the Koninklijke Bibliotheek which work with publishers to identify and validate
trigger events through a series of contracted communications, but could potentially leave library
users temporarily without access to authorized content.

Publishers
The benefits of LOCKSS to publishers include reducing (or eliminating) the publisher’s internal
archiving costs, meeting library demand for a trusted, third-party archive, and meeting library
demand for perpetual access without negative impact on a publisher’s operations. At the same
time, many publishers also participate in other e-journal preservation projects such as Portico,
and the Koninklijke Bibliotheek’s e-Depot. Hence the LOCKSS value proposition of saving
costs is undermined if publishers are required to participate in multiple initiatives. Moreover, by
replicating a publisher’s content and placing copies in multiple locations, LOCKSS increases the
risk to publishers of unauthorized access to or theft of that content.

Libraries
According to the LOCKSS Website, the benefits to libraries include securing protection against
eventual loss of access to important scholarly source materials and providing a practical way to
maintain continuity of library collections. The main difference articulated by the LOCKSS
Program is that LOCKSS allows institutions to continue to collect and preserve – that is,
maintain a usable copy of purchased content – locally rather than having that content managed
and maintained by a separate repository. The latter example is true of the Koninklijke
Bibliotheek and Portico models.

With the expansion of LOCKSS functionality to include persistent caches of other Web-based
content, it is arguable that investing in a LOCKSS box or a collaborative LOCKSS project might
enable long-term access to a wider array of Web or network based digital content beyond e-
journals.

3.1.3 Organizational Structure (Brief Overview)
The LOCKSS Program was initiated by Stanford University and remains as an organizational
unit housed within the university. Early funding for the program and software development
came from a variety of grant sources, most notably the Andrew W. Mellon Foundation, the
National Science Foundation, and National Digital Information Infrastructure and Preservation
Program (specifically for CLOCKSS). LOCKSS has received support from a variety of other
funders, as well as in-kind support from several organizations.

5 Portico, an electronic journal archiving service <http://www.portico.org/index.html>

8

In recent years, there has been an effort to move away from grant-based funding and to make the
program sustainable by creating the LOCKSS Alliance. The LOCKSS Alliance is a membership
organization “open to libraries interested in LOCKSS as part of their strategy for building and
preserving digital collections of e-journals and other Web-based content.”6 At the time of the
audit the LOCKSS Alliance consisted of 125 members. It was governed by a Board of Directors,
and staffed by project team members, including Program Director, Victoria Reich and Chief
Scientist, David S.H. Rosenthal.

Membership fees support ongoing technical development of the software, as well as Alliance
activities. Salaries of the staff and periods of intense development have typically been covered
by temporary, grant funding. There is some uncertainty whether the current Alliance
membership is large enough to sustain staffing costs and the degree of ongoing development
needed for the software. (There is an extensive and impressive list of libraries using LOCKSS at
http://www.lockss.org/lockss/Libraries, but not all of these institutions have opted to join the
LOCKSS Alliance and pay the ongoing support fees.) Like other Open Source initiatives
incubated within the library community (D-Space, FEDORA, etc) , there is some thought to
finding a new organizational home, perhaps with a non-profit that would commit to covering the
funding gaps, as necessary. Thus far, this has not occurred and it is unclear what the
consequences will be if the Alliance dues do not completely cover all its anticipated costs. More
information about this can be found in Section 2.3.1, Organizational Analysis.

3.1.4 Technical Architecture (Brief Overview)
The LOCKSS technology is that of a network appliance on a peer-to-peer network of persistent
Web caches. Its technical architecture can be broken into two parts: the software and the
hardware.

Software:
The first version of LOCKSS software was based on a boot-floppy distribution of Linux. After
three years of testing at over 50 libraries world-wide, this appliance level of the system was
replaced by a second version, based on a modified version of the OpenBSD install CD-ROM. 7
It is a specially configured version of OpenBSD which boots and runs from a CD, downloading
updates automatically. It relies upon daemons to both get content to LOCKSS boxes, as well as
to cooperate to detect and repair damage across the LOCKSS network to which it belongs.

The software collects HTTP delivered content from Web sites based upon plug-ins designed for
the content and Website from which it will be harvested. When working with e-journal publisher
sites, LOCKSS must have specially authorized access to enable it to crawl and harvest content
appropriately. Once a publisher’s content is collected, the software daemons mentioned above
consistently audit the integrity of the files and cooperate with (poll) other LOCKSS boxes on the
network to validate caches against one another and repair problems and resolve gaps, as

6 The LOCKSS Alliance <http://www.lockss.org/lockss/LOCKSS_Alliance>
7 David S.H. Rosenthal. “A Digital Preservation Network Appliance Based on OpenBSD.” Proceedings of BSDCon.
San Mateo, CA September 8-12, 2003.
<http://www.usenix.org/publications/library/proceedings/bsdcon03/tech/full_papers/rosenthal/rosenthal.pdf>

9

http://www.lockss.org/lockss/Libraries

necessary. (The more organizations on the particular LOCKSS network, the higher the level of
assurance in the polling/authentication process among LOCKSS boxes.) The software is coded
to make each of these processes occur on a regular basis without human intervention.

Hardware:
Some basic design principles were factored into the creation of LOCKSS, including reliance on
low cost PCs combined with widespread replication. In doing this, the start-up cost to utilize
LOCKSS is low and the potential failure rate of individual inexpensive PCs is offset by the
content being replicated on many similar devices. Malfunctioning PCs simply need to be
replaced with a newer PC, have the LOCKSS software reloaded and configured, and the
programs will accomplish the rest in regaining and loading the appropriate content back onto the
local LOCKSS box. The configuration and machines are deliberately kept simple.

The current minimum hardware requirements for LOCKSS boxes are as follows:

• A specified amount of CPU and memory. 1GHz VIA CPUs are the minimum
recommended, while a 2.4GHz Celeron is “lavish.” LOCKSS recommends 1GB of
memory. There is a bug in the current software that causes it to fail on machines with
more than 2GB of memory; it was to be fixed in the subsequent release.

• A CD drive and optionally either:
o a floppy disk drive
o or a USB flash memory drive with a hardware write-protect switch.

• Specified disk capacity. 250GB is enough to get started. The current CD supports both
parallel ATA (PATA) drives and serial ATA (SATA) in native mode. Some adjustment
of BIOS settings may be needed to handle SATA drives.8

Further information about LOCKSS technical architecture can be found in Section 2.3.3,
Technical Analysis.

8 Installing LOCKSS – Computer Specifications <http://www.lockss.org/lockss/Installing_LOCKSS>

10

3.2 Objectives, Scope, & Methodology

3.2.1 Scope
This audit evaluated and provides information on the following topics:

• Organizational Infrastructure
• Technical Analysis (Digital Object Management, Technologies and Technical

Infrastructure)
• Content
• Vulnerabilities

In all areas, the focus was on identifying and describing issues that could affect the viability and
stability of the repository and the digital objects stored within the system.

At the time of the audit, LOCKSS had been released in its production system for more than two
years. The software was stable and only minor development issues were underway, most of
which were to address the plug-ins required by new publisher participation.

3.2.2 Method of Work
The work performed in this audit was different than the full-scale audits performed at other
organizations. It consisted almost entirely of a review of publicly available documentation, in
addition to several conversations with LOCKSS Project Director Victoria Reich. Based upon
available information, the RLG-NARA Checklist for the Certification of Digital Repositories
was completed to the best of the auditor’s abilities and is reflected in this report. An onsite visit,
however, did not take place. And no detailed technical testing was conducted although several
scenarios were communicated to V. Reich and D. Rosenthal and responses were received via
email. These scenarios were designed to detect potential vulnerabilities in policies and
functionality (ingest, processing, archival package creation, data loss detection & resolution,
access, etc). Such scenario testing cannot ascertain the integrity of the digital objects stored
within the LOCKSS system or any particular LOCKSS box, but did provide insight into threat
detection and risk management capabilities of the system. Finally, a brief analysis of content was
made to determine the extent of content available, as well as discovery and delivery options that
would be accessible to users should a trigger event occur and “unlock” any LOCKSS content.

3.2.3 Standards against Which the Audit Was Completed
The RLG-NARA Checklist for the Certification of Digital Repositories (August 2005) provided
the metrics for this audit. The checklist was developed by an international task force of experts
in digital preservation, digital repositories, and data archives. While the Checklist is not yet an
international standard itself, it is based upon and references a number of international standards
and best practices such as the Reference Model for an Open Archival Information System (ISO
14721:2004), Control Objectives for Information and related Technologies (COBIT) 4.0,
Information Technology—Security techniques—Code Of Practice For Information Security
Management (BS ISO/IEC 17799:2005), PREMIS Preservation Metadata (2005), and Trusted
Digital Repositories: Attributes and Responsibilities (2002).

11

3.3 Findings

As an acronym for Lots of Copies Keeps Stuff Safe, LOCKSS has come to be used in a variety
of ways, having implications for understanding the organization, its activities, its sustainability,
and its technical capabilities. The core concepts are briefly described here to enhance
understanding of the full report details.
LOCKSS Program: the term used to describe the umbrella for the myriad activities developing

and/or utilizing LOCKSS. Based at Stanford University, this is seen as the
organizational home for LOCKSS.

LOCKSS Software: the software code driving the LOCKSS peer-to-peer, networked
preservation system.

LOCKSS Box: a local implementation of LOCKSS software, run on a PC, and part of a larger
LOCKSS network

LOCKSS Team: the group of people responsible for LOCKSS software development and
LOCKSS deployment.

LOCKSS Alliance: the relatively new, membership organization established to make the
LOCKSS program sustainable over time. Members pay annual fees to participate and
the Alliance is governed by a Board.

CLOCKSS: Controlled LOCKSS, a new initiative of publishers and libraries to have a
community-controlled, dark archive of e-journal content.

3.3.1 Organizational Analysis

3.3.1.1 Governance
The LOCKSS Program was initiated by Stanford University and remains as an organizational
unit housed within the university, rather than a separate corporate entity. Early funding for the
program and software development came from a variety of grant sources, most notably the
Andrew W. Mellon Foundation, the National Science Foundation, and National Digital
Information Infrastructure and Preservation Program. Other grantors and organizations
contributing in-kind support include:

• The UK's Joint Information Systems Committee
• Sun Microsystems
• HP Labs
• Intel Research Berkeley
• Stanford University Libraries and Academic Information Resources
• Stanford Computer Science Dept.
• Harvard Computer Science Dept.

Despite funding origination, the responsibility for managing LOCKSS remained with the
LOCKSS Program and Stanford University. In recent years, a drive to move away from grant-
based funding and establish a more sustainable program resulted in the creation of the LOCKSS
Alliance, a new organizational body for LOCKSS management. The Program remains based at

12

Stanford and under the directorship of Victoria Reich, but is now under the control of a separate
organization: the LOCKSS Alliance.

The LOCKSS Alliance is a membership organization “open to libraries interested in LOCKSS as
part of their strategy for building and preserving digital collections of e-journals and other Web-
based content.”9 It is governed by a Board of Directors, and staffed by project team members,
including Program Director Victoria Reich and Chief Scientist David S.H. Rosenthal. Technical
development is supported by a small team of engineers.

LOCKSS Alliance membership fees support ongoing technical development of the software, as
well as Alliance activities. Salaries of the staff and periods of intense development have
typically been covered by temporary, grant funding.

3.3.1.2 Staff
The LOCKSS staff is small, reflecting the highly decentralized nature of the LOCKSS program.
In general, the team is primarily responsible for software development and has some technical
support responsibilities to LOCKSS Alliance members. The day-to-day support required for
LOCKSS boxes is the responsibility of the local LOCKSS implementers though by design, this
responsibility requires little time commitment per month. LOCKSS is designed to be as
automated as possible, so local tasks tend to be error alert resolution, basic machine checks, and
occasional monitoring of software upgrades.

LOCKSS original engineering staff was highly qualified, due to the core group designing and
implementing LOCKSS early on and a geographical location in the Silicon Valley. As time
progressed, supporting these highly qualified staff with commensurate salaries posed a challenge
for long-term sustainability. In many cases however, some original staff moved on to senior
positions within local high technology companies but continue to advise and/or consult on
LOCKSS issues as Friends of LOCKSS. The current engineering team is highly qualified and
represents engineers as well as affiliated users of the system (including Chris Rusbridge in the
UK).

At first glance, the staff appears to be small compared to the size of the Alliance, but LOCKSS’s
highly automated environment, as well as the fact that many responsibilities are managed at the
local LOCKSS box level, actually make this a manageable set of tasks for the current team. Of
course further development of the software could be advanced more quickly with a larger and
dedicated team, but the LOCKSS Program does want the software to live in the Open
environment, gathering contributed utility from institutions using LOCKSS. For those reasons,
the current team size and skill sets they possess are suited to the program.

3.3.1.3 Policies and Procedures
The policy and procedures framework is appropriately lightweight. High-level policies are
managed by the LOCKSS Alliance Board and the LOCKSS Technical Policy Committee. A set
of “day-to-day” procedures to be managed by the local institution implementing LOCKSS are
specified by the LOCKSS Program. Most of this information is available from the LOCKSS

9 About the LOCKSS Alliance. <http://www.lockss.org/lockss/LOCKSS_Alliance>

13

Website (http://lockss.stanford.edu). This Website is actually a wiki, implemented in
MediaWiki, so that changes made to the site are also tracked.10 Policies related to collection,
retention, etc., are the responsibility of the local institutions and the LOCKSS networks in which
they participate.

There is a formal procedure for periodic review at the programmatic and Alliance level. Issues
related to implementations at the local level are unknown to the auditors and are local
responsibilities.

On the software level, there is a defined set of policies and procedures for code management.
According to David Rosenthal, SourceForge is utilized as the sole source code management
system and contains every change that has ever been made to the LOCKSS source, together with
notes briefly justifying each change. These notes also correspond to entries in the LOCKSS
Roundup bug tracking database, completing the cycle from change request through code source
change.11

3.3.1.4 Financial Analysis
As a part of the sidewalk audit, only minimum financial information was available from the
LOCKSS Program. Necessary information on LOCKSS finances was gathered from
publications and conversations with LOCKSS staff and the following comprise the basic
expenses: LOCKSS team salaries (almost exclusively supporting technical development and
support) and activities associated with Alliance activities (travel, meetings, as well as meetings
with publishers). Machine expenses for LOCKSS boxes are borne by the institutions supporting
the local implementations of LOCKSS boxes.

Business Model
There appear to be two components of the current LOCKSS business model. The first is to
achieve sustainability and allow continued centralized development through the formation of the
LOCKSS Alliance. The goal is to move LOCKSS to self-sufficiency via membership fees.
According to the LOCKSS Website, membership fees for the LOCKSS Alliance are based on
Carnegie Classification for UA libraries and equivalent measures are used for non-US libraries.
LOCKSS Alliance fees for 2006 were:

(Institution size) (USD)
Research universities (very high research activity) 10,800
Research universities (high research activity) 9,600
Doctoral/research universities 8,200
Master’s colleges and universities (larger programs) 5,200
Master’s colleges and universities (medium programs) 4,443
Master’s colleges and universities (smaller programs) 3,685
Baccalaureate colleges 2,160
Associate’s college 1,080
Specialized (Quote available on request)

10 Email from David Rosenthal via Victoria Reich, 19 December 2006.
11 Ibid.

14

http://lockss.stanford.edu/

At the time of the audit the current size of the Alliance was 125 institutions and by February
2006 membership dues had grown enough to cover “two thirds of the community support needed
to be self-sustaining.”12 Based on information available at the time of the audit, the Alliance had
not yet reached its target membership level and was therefore still seeking further membership
growth.

LOCKSS has since reported, however, that in 2007 the Alliance generated sufficient income to
“cover all the LOCKSS-related activities of the Stanford team.” If true, this would indicate that
LOCKSS has become self-sustaining, independent of grants and other soft money subsidies -- a
very promising development.

It will be increasingly important for membership to continue to grow substantially, or for
LOCKSS to find an organizational sponsor to provide additional funding to supplement the
income from Alliance membership fees.

The second component of the business model is locating and securing other resources to assist
with continuing technical development. According to Victoria Reich, “a key to the LOCKSS
Program business model is building an open source technical community.” The JISC [Joint
Information Systems Committee in the UK] was funding technical development staff through the
Digital Curation Centre, and the Library of Congress NDIIPP program recently committed
$700,000 in funding to the CLOCKSS dark repository program. (See Section 2.3.1.6 below.)
According to Reich, “The LOCKSS Alliance community partakes in technical workshops held
every month or two. The software is fully documented and available on SourceForge. We are
encouraging communities to use the software for varied applications thereby building a robust
user base and community of expertise.”

At the time of the audit it was not clear how the second component of the business model would
translate into longevity for the LOCKSS Program, but it did address some of the issues of
sustainability of the software should the LOCKSS Program exhaust its funding. Many users of
the LOCKSS software are not members of the LOCKSS Alliance. While their institutions do not
contribute to the financial well-being of LOCKSS, they do keep the software in use and so will
potentially have an interest in its further development as an Open Source tool with its own
longevity separate from the program.

Regardless of the status of the LOCKSS Program or Alliance, owners of LOCKSS boxes should
be able to continue to independently keep the content gathered by LOCKSS boxes and even
potentially gather new content. In these cases, technical support would need to come from the
Open Source community that Reich asserts should support LOCKSS. Further development
would also have to come from the community.

Budget Direction
The budget of the Alliance is controlled ad monitored by the LOCKSS Alliance Board of
Directors.

12 Victoria Reich. “Editors Interview with Victoria Reich, LOCKSS Program.” RLG DigiNews, 15 February 2006.
<http://www.rlg.org/en/page.php?Page_ID=20894#article0>

15

3.3.1.5 Contracts (Submission Agreements) & Licenses
LOCKSS was designed to work in a rights-compliant and rights-controlled environment.
Specific technical components make sure that only authorized content can be collected and
distributed among LOCKSS boxes in any LOCKSS network.

Appropriate Contracts and Deposit Agreements
Publishers participating in the LOCKSS Alliance must make their titles “LOCKSS compliant.”
LOCKSS compliance means that participating publishers must grant two specific types of
permissions:

1. permission for libraries to collect, preserve, and provide access to content that they have
individually licensed from the publisher; and

2. permission for LOCKSS software to crawl, collect, and preserve that content from the
publisher Websites.

The LOCKSS Program (and Website) did not specify the rights language the publisher must use,
but does provide suggested publisher declarations. By virtue of these grants of rights by the
publisher, libraries may then:

• Cache and maintain through the LOCKSS system currently accessible materials that they
have licensed from the participating publisher;

• Use such material in ways consistent with the original license terms;
• Provide copies to other appliances for purposes of audit and repair. 13

One potential weakness of this arrangement is that publishers grant archive rights to the licensees
individually, rather than to the LOCKSS Alliance. Hence technically the LOCKSS Alliance has
no standing with the publishers through which it might effectively represent or enforce the rights
of participating libraries should a publisher default on its agreement.

Electronic Implementation of Agreements
In order to collect content from a Web site, the LOCKSS software needs positive evidence that it
has permission to do so. This is provided in the form of a permission page that contains one of
the supported permissions statements. (Sample permission statements are available.)14 This
permissions component is handled through a Web-based LOCKSS publisher manifest
(http://www.lockss.org/lockss/Publisher_Manifest_Page). A publisher manifest permits the
software to crawl, collect, and preserve the content. It also lists the top level URLs so that the
crawler knows where to start the collection process. A publisher manifest is needed for each
Archival Unit (typically a volume) to be preserved through the LOCKSS system and LOCKSS
provides both XML templates and a Web form to generate the necessary manifests.

In addition, the LOCKSS system requires the manifest page to include either a suitable Creative
Commons license (http://www.creativecommons.org/), or the following declaration: "LOCKSS
system has permission to collect, preserve, and serve this Archival Unit." Therefore, the right to
preserve the content is explicitly given in all licensing arrangements made with publishers and is
verified by publishers before content can be obtained.

13 For Publishers: Making your Titles LOCKSS Compliant.
<http://www.lockss.org/lockss/For_Publishers#Making_Your_Titles_LOCKSS_Compliant>
14 Supported Permissions Statements. <http://documents.lockss.org/pub-wiki/SupportedPermissionStatements>

16

Finally, and significantly, agreements made by publishers come with perpetual access
implications. Once content is harvested via LOCKSS (with publisher permissions) and resides
within a LOCKSS network, the content is permanently available to authorized participants in the
network. Even if a publisher withdraws its support for LOCKSS participation, it cannot remove
the copies of content already ingested and under the management of LOCKSS participants.

3.3.1.6 Succession Planning
The LOCKSS Program and the LOCKSS Alliance are not repositories, but rather a
programmatic effort and membership initiative operating under the auspices of Stanford
University Libraries. Stanford provides assistance with publisher relations and software support.
Formation of the Alliance was intended to keep the LOCKSS Program (support and
development) sustainable. LOCKSS staff members actively seek other organizational support –
potentially a new organization home which can commit to stable funding in addition to Alliance
fees, although at the time of the audit a new organization had not been located and grants and
Alliance membership revenues appeared to be the main sources of financial support.

Succession planning for the LOCKSS software is arguably just as critical as for the Alliance
itself. Since the software was designed and released into the Open Source community, all users
are technically capable of continued development and support of the software. Nonetheless, at
the time of the audit a large Open Source LOCKSS community had yet to develop even though it
has been a major part of the LOCKSS business model. If such a community does not develop
and if the Alliance failed, it appears that no likely successor is in place to manage the central
technical support and development roles currently managed by the LOCKSS team.

Regarding long-term content accessibility, by design the LOCKSS software places copies of the
archived content at the authorized (subscriber) participating institutions. Should the LOCKSS
Alliance fail for any reason, the content stored on local LOCKSS boxes would not be affected
and the institutions would continue to have access to the content based upon the original
publisher agreements.

NOTE: CLOCKSS is an implementation of a LOCKSS network designed as a dark archive.
CLOCKSS partners – primarily publishers -- contribute financially to this effort. In June 2006,
the Library of Congress entered into a three-year cooperative agreement with Stanford
University to provide approximately $700,000 in support of Stanford’s CLOCKSS (Controlled
Lots of Copies Keep Stuff Safe) pilot and related technical projects. This agreement was
intended to provide three solid years of initial financial sustainability for CLOCKSS.

17

3.3.2 Content Analysis

3.3.2.1 Logical and Physical Content

Content collected during a LOCKSS crawl is what is available on a participating publisher’s
Website. The digital files collected are bit-preserved within the LOCKSS system along with
their appropriate, though minimal metadata. The system preserves content in a repository
defined by a set of Java classes. The Archival Information Package (AIP) consists of instances of
these classes, representing the content itself, metadata obtained from the publisher manifest page
and the HTTP headers, and an instance of a Java class implementing the LOCKSS plug-in API
encapsulating metadata not obtained from these sources. This instance is normally driven by
externalized metadata in the form of XML files.

Underlying LOCKSS design is the belief that preserving the presentation form of Web content
rather than the source databases used to generate it showed promise of being a pragmatic,
practical approach to long-term preservation. It leverages and preserves a form of the publisher's
content made available directly by the publisher without any alterations or huge processes having
to be followed by the publisher. It was also believed that making this content the target of
preservation rather than any additional information or value-added options available from the
publisher through a content management system or full source database would lead to
agreements more acceptable to both librarians and publishers. (NOTE: there is a potential
exception to this design in CLOCKSS. As a community dark archive, CLOCKSS will also
accept publisher source files if they are offered, but does not require them.)

Content preserved on LOCKSS boxes also remains accessible at the original publisher's URL.
Links and bookmarks, searches through indexing and abstracting databases, etc. resolve either to
the publisher's site or to the locally cached content. So the physical and logical e-journal articles
are the same on both systems, but the default is always to resolve to the publisher site unless the
LOCKKS system detects a problem.

3.3.2.2 Extent of Content
Committed Content
At the time of the audit more than 40 publishers allowed their content to be harvested and
archived on LOCKSS boxes. Those forty publishers represented over 1,000 titles and an
additional eleven publishers responsible for many other titles are in the process of agreeing to
have their content preserved via LOCKSS. Some content is available to any LOCKSS box in the
system, other content is available but its availability is restricted to LOCKSS Alliance members
only.

Because of the design of the LOCKSS software and system, the content is ingested into the
system as soon as the publisher signals agreement and has made the appropriate publisher
manifest available to the software (including appropriate capture URL). At that point boxes on
the LOCKSS network begin ingesting, auditing, comparing, and replicating the content along the

18

greater LOCKSS network. Unlike other e-journal repositories like Portico and the Koninklijke
Bibliotheek’s e-Depot, libraries running LOCKSS boxes do not need to manipulate or dataload
content. As soon as the appropriate conditions exist and the authorized URL is provided, content
can be ingested automatically by the LOCKSS software. This prevents the delay of content
additions common to other types of digital repositories and makes it unlikely that libraries will
ever face a situation where committed content varies significantly from ingested content.

3.3.2.3 Usability of the Content

Content harvested and preserved on LOCKSS boxes is in the same form as the content exposed
on the publisher Websites and is renderable with a Web browser. This generally means HTML-
encoded content, but also includes the relevant PDFs, image and data files, as appropriate.
Because of the requirement to be renderable with a Web browser (delivered as it was on the
publisher site, excluding the value added content that might have been available through a
publisher’s surrounding content management system), the acquired contents becomes renderable
with a widely-held, basic kind of software package – a Web browser. As long as a Web browser
can continue to render the content as captured, it remains fully usable within the LOCKSS
system, awaiting any possible trigger event.

There has been some preservation planning on the part of LOCKSS staff to make sure that what
is captured and renderable in today’s browsers will be able to be rendered and/or supported in
later browsers. In the last year, LOCKSS technical staff completed a proof-of-concept formation
migration capability with LOCKSS. The basis for this is a “migration on demand” or “migration
on access” strategy which will essentially identify content problems via MIME-Type values
(much like a format registry) and seek available converters to invoke and perform on-the-fly
conversion of the digital object so that it can be rendered.15 The LOCKSS software is currently
being enhanced to allow an API to work across the system in this fashion. As format registries
(e.g. GDFR) become available, the LOCKSS Program plan is to use them to locate, and to use
the LOCKSS system to preserve copies of, suitable converters whose input formats match those
found in LOCKSS boxes. These converters would then be invoked using the "migration on
access" framework described in 2005 D-Lib paper to create temporary access copies on demand.

The LOCKSS team has agreed to consider incorporating functionality with emerging format
registries that provide links to registered format converters, when such registries are available for
production use, potentially saving time and the expense of other potential solutions.

Content Accessibility
In almost all instances, access to content occurs through the content owner’s (publisher’s) site
exclusively. Copies of content preserved in LOCKSS box are not available to, or utilized by
users, unless a trigger event occurs.

15 David S.H. Rosenthal, et al. “Transparent Format Migration of Preserved Web Content.” D-Lib Magazine,
January 2005. <http://www.dlib.org/dlib/january05/01rosenthal.html>

19

Trigger Events
LOCKSS agreements with publishers, subscription (licensed) stipulate that content cached in
LOCKSS boxes is to be made available to the local user community only in the event of a trigger
event. Trigger events include:

• Publisher ceases operation or fails and content is no longer available from another source;
• Publisher no longer offers back issues to everyone and content is no longer available

from another source;
• Journal ceases publication and back content is not longer available from another source;
• Expiration of the publisher’s copyright;
• Catastrophic failure of publisher’s traditional access mechanism; and
• Temporary failure of publisher’s traditional access mechanism (or loss of access to it).

Triggered Content
Content preserved in LOCKSS boxes (and including that in the CLOCKSS archive) will be
available after a trigger event. In the LOCKSS scenario, access to preserved content is triggered
when the publisher (rights holder system) is unable to resolve a specific URL request from a
user’s system. When that URL is not available at a particular moment in time, LOCKSS content
is “triggered” and the content on the LOCKSS box associated with that URL is served from the
LOCKSS box to the reader. In the CLOCKSS scenario, unavailability of content would trigger
what the LOCKSS Program refers to as “a collaborative process” between publishers, librarians,
and representing societies “to determine whether materials should be made generally available to
all for an unlimited or an indefinite amount of time.”

Availability (Timing) of Triggered Content
As described above, traditional triggers within LOCKSS systems would result in immediate
access to the content on the LOCKSS box. This allows users to have uninterrupted access to
content, and quickly resolve instances of a when a publisher is temporarily unable to serve the
content due to power failure or even greater system failure.

Content within the CLOCKSS archive is likely to take a longer period of time since the decision
about releasing content widely must be addressed by all participating parties – publishers,
libraries, societies, etc.—before the CLOCKSS content can be released.

Perpetual Access
As a component of LOCKSS agreements, subscribers are allowed access to appropriate licensed
content and may harvest and store that content as a part of a LOCKSS network. If a publisher or
subscriber ceases the contract, the harvested content remains the property of the previously
subscribing institution, providing immediate and uninterrupted access to the content to which
they had subscribed. This perpetual access via local access is an appealing component of
LOCKSS. By nature of not only possessing a physical copy of the files, but being immediately
able to allow user access, LOCKSS perpetual access option for e-journal collections is a
powerful incentive for potential LOCKSS Alliance members.

20

3.3.2.4 Link Management Solutions
Link management and referential integrity are core components of LOCKSS functionality. As a
part of LOCKSS content ingest, LOCKSS metadata is collected and maintained. This includes
the URL from which the file was obtained. This serves as not only provenance metadata, but
allows the link management to serve up content to the user when the publisher (content owner’s)
Website is unavailable.

3.3.2.5 Termination of Service Policy
This has been explained indirectly through the Perpetual Access and Licensing and Agreements
sections. Termination of service means two things to a LOCKSS user. When a publisher
terminates its LOCKSS agreement all content already harvested is still in the possession of the
local LOCKSS box owner and may be served up under the original access terms of the
institutional subscription agreement. If an institution decides to terminate LOCKSS Alliance
membership, there are two implications. First, an institution will be responsible for the local
support of the LOCKSS box and the broader LOCKSS network to which it belongs. Technical
support from the LOCKSS team is only available to Alliance Members. The second implication
is the potential loss of content. Certain agreements with publishers provide LOCKSS content
permissions only to LOCKSS Alliance members. Terminating a LOCKSS Alliance membership
could potentially result in the loss of access to future Alliance content.

3.3.2.6 Threats to Content

Content stored on LOCKSS boxes is fairly secure from threats to that content, especially if the
LOCKSS network is fairly large. By nature of the LOCKSS automatic authentication and repair
mechanism, content is consistently polled and verified against several other LOCKSS boxes.
Detection of any anomaly results in further polling (if applicable) and repair. Failure of any one
LOCKSS box is easily remedied by reconfiguring a replacement box and connecting it to the
network. Content that is supposed to be on the previously damaged/malfunctioning LOCKSS
box is replaced through network repair.

Moreover, the LOCKSS system is far more automated than most other repository or archiving
options, reducing the chance of intentional or unintentional human error into the process.

It is unclear whether the migration on access policy will be a problem for all future LOCKSS
content. The recent proof-of-concept project to enable migration on access was successful for
the kinds of content tested. That said, with new uses of LOCKSS arising frequently, it is quite
possible—in fact highly probable -- that this particular strategy may not be effective for all types
of content. This would pose a risk to certain kinds of content and therefore this functionality
should be the focus of future LOCKSS development.

21

3.3.3 Technical Analysis

3.3.3.1 Architecture
The LOCKSS technology is that of a network appliance on a peer-to-peer network of persistent
Web caches. Its technical architecture can be broken into two parts: the software and the
hardware.

Software
The first version of LOCKSS software was based on a boot-floppy distribution of Linux. After
three years of testing at over 50 libraries world-wide, this appliance level of the system was
replaced by a second version, based on a modified version of the OpenBSD install CD-ROM. 16
It is a specially configured version of OpenBSD which boots and run from a CD, downloading
updates automatically. It relies upon daemons to both get content to LOCKSS boxes, and to
cooperate in detecting and repairing damage across the LOCKSS network to which it belongs.

The software collects HTTP delivered content from Web sites based upon plug-ins designed for
the content and Website from which it will be harvested and saves the content as Web caches.
When working with e-journal publisher sites, LOCKSS must have authorized access via an
included publisher manifest (including pointers to appropriate content URLs) to enable it to
crawl and harvest content appropriately.

Once content is collected, software daemons mentioned above consistently audit integrity of the
files against other LOCKSS boxes on the network to validate caches against one another and
repair problems or resolve gaps, as necessary. This integrity and authentication process is
accomplished via a specially designed LOCKSS “opinion poll” that enables peer LOCKSS boxes
to “vote” on large archival units (AUs) of content. According to a technical paper on LOCKSS,
because each peer holds a different set of AUs, the protocol treats each AU independently. If a
peer loses a poll on an AU, the protocol treats each sequence of increasingly specific partial polls
within the AU to locate damage. (LOCKSS recently reported that during the first quarter of
2007, the system migrated to use the V3 protocol, which is capable of resolving all damage to an
AU in a single poll.) Other peers cooperate with the damaged peer if they “remember” that it
agreed with them in the past about the AU, by offering it a good copy, in the same way they
would for local readers.17 The software was coded to make each of these processes occur on a
regular basis without human intervention.

The more organizations on the particular LOCKSS network, the higher the level of assurance in
the polling/authentication process among LOCKSS boxes. As well, because peers can and will
only help others they recognize from participating previously, this prevents free-loading. An
institution’s LOCKSS box must have downloaded appropriate content from publisher Websites
and participated with other peers before [re]gaining content from other LOCKSS boxes.

Hardware

16 Rosenthal, “A Digital Preservation Network Appliance Based on OpenBSD.”
17 Petros Maniatis, et al. The LOCKSS Peer-to-Peer Digital Preservation System. ACM Transactions on Computer
Systems, February 2005. <http://www.eecs.harvard.edu/~mema/publications/TOCS2005.pdf>

22

Some basic design principles were factored into the creation of LOCKSS, including reliance on
low cost PCs combined with high replication. In doing this, the initial costs of implementing
LOCKSS are low and the potential failure rate of individual low-cost PCs is offset by the content
being replicated on many similar devices. Malfunctioning PCs simply need to be replaced with a
newer PC, have the LOCKSS software loaded and configured, and the programs will accomplish
the rest in regaining and loading the appropriate content back onto the local LOCKSS box over a
period of time. The configuration and machines are deliberately kept simple.

The current minimum requirements for LOCKSS boxes [from LOCKSS Website] are as follows:

• A specified amount of CPU and memory. 1GHz VIA CPUs are the minimum
recommended, while a 2.4GHz Celeron is “lavish.” LOCKSS recommends 1GB of
memory. There is a bug in the current software that causes it to fail on machines with
more than 2GB of memory; it was to be fixed in the subsequent release.

• A CD drive and optionally either:
o a floppy disk drive
o or a USB flash memory drive with a hardware write-protect switch.

• Specified disk capacity. 250GB is enough to get started. The current CD supports both
parallel ATA (PATA) drives and serial ATA (SATA) in native mode. Some adjustment
of BIOS settings may be needed to handle SATA drives.18

The hardware and networking access required to run LOCKSS are the responsibility of the local
institution implementing LOCKSS. LOCKSS box caches need static, globally routable IP
addresses and communicate via User Datagram Protocol (UDP), essentially in a broadcast mode.
LOCKSS boxes can be run behind firewalls, if desired. (The V3 protocol now in use by
LOCKSS uses TCP/IP, not UDP.)

The LOCKSS program does not provide hardware or network access, but instead provides only
the software necessary to configure and drive the system. This frees the LOCKSS Program from
having to budget these costs internally or charge for hardware and software. It also allows
institutions to choose whatever PC system they prefer or that meets local requirements, as long
as the fit the minimal requirements outlined above.

A final note about software, hardware, and networks: for the proper polling functionality which
is so critical to LOCKSS functionality, the LOCKSS Program has recommended that a minimum
of 6-7 replicas (LOCKSS boxes) exist within a private LOCKSS network (e.g., the MetaArchive
or GPO projects) and participate in all polls. The production system of LOCKSS has over 100
boxes but not all have all the possible content collections. LOCKSS system parameters are set
so that a typical poll in the system has 7-10 votes.19

Architecture Options Considered
The original LOCKSS software was based on the Linux Router Project (LRP) platform, a boot
floppy containing a minimal, but functional Linux system in a RAMdisk.20 It was capable of
downloading and installing the LOCKSS daemon and the software on which it depended, such as

18 Installing LOCKSS – Computer Specifications <http://www.lockss.org/lockss/Installing_LOCKSS>
19 Reich, “Editors’ Interview with Victoria Reich, Director, LOCKSS Program.”
20 Rosenthal, “A Digital Preservation Network Appliance Based on OpenBSD.”

23

the Java Virtual Machine that would not fit on a floppy. To begin running LOCKSS, the local
institution had to also download a Windows program that formatted, wrote, and checked a
generic version of the floppy. When the PC was booted from this floppy, the local operator had
to input necessary configuration information that personalized the floppy, partitioned the disk,
and created the necessary file systems on it. UNIX configuration skills were also needed to
recover from a compromised or damaged LOCKSS system, making the task of recovery much
more complicated and vulnerable to human error.

In order to eliminate the human error factor and make the system easier to run, the system was
redesigned to utilize an OpenBSD install CD rather than using Linux. The modified OpenBSD
system could fit on a single floppy (now CD) and be write-locked. Moving to this system
enabled LOCKSS to continue functioning as designed, but simplified the operator side of two
key LOCKSS tasks performed at the local level: installing and configuring a new system and
recovering from a compromised system. New system installation can now be done by almost
anyone – programmer experience is no longer necessary. In addition, recovering from a
LOCKSS local system problem can now generally be managed by rebooting from the
floppy/CD.

3.3.3.2 Data Security (Access Controls)
Authorization and Authentication
Authorization and authentication of users to access LOCKSS content are managed by the local
institution’s authorization and authentication systems. LOCKSS boxes have to be integrated into
the local institutional network in order for LOCKSS to work properly. If done correctly,
authorized readers from an institution can access content stored within a LOCKSS box when the
publisher’s (content owner’s) Website is not available for any reason (subscription canceled,
network traffic, publisher server down, etc.). When access to the content owner’s Website is
interrupted, the LOCKSS software steps in and redirects user requests to the LOCKSS cached
content, in effect acting as a proxy server for the content owner’s site.

Physical Security
Physical security, i.e.., controls and protections against unauthorized access to the LOCKSS box,
is the responsibility of local implementing institutions since these are deployed locally.

3.3.3.3 Data Deposit & Ingest
Content Acquisition, Source Files & File Formats
LOCKSS software was designed to be format-agnostic. Content is collected as it exists in the
Web-based environment via Web harvesting (crawling) and Open Archives Initiative Protocol
for Metadata Harvesting (OAI-PMH). Original formats are ingested as is (or as published if it is
an e-journal). Where plug-in software is required to render a format, that software is ingested as
well. Finally, in cases where content is published in several formats (HTML and PDF),
LOCKSS will ingest all formats and copies. This information is bit preserved, as received. The
goal is to preserve the “look and feel” of the e-journal content when it was captured. LOCKSS
does not preserve interactivity that is delivered via Web services from publishers’ Websites (e.g.
AJAX, SOAP).

24

In the LOCKSS system SIPs are created by the publisher, who places a "publisher manifest
page" containing metadata on their Website and publishes the URL. A participating
organization's LOCKSS system will then, as directed by the authorized administrator, collect via
HTTP the entire SIP containing the content and the "publisher manifest page" and store it
together with all available HTTP header information (including MIME type). This information is
sufficient at the time of collection for a browser to render the content. Packaging Information is
encoded in instances of Java classes implementing the LOCKSS plugin API. In most cases this is
a generic implementation driven by XML files.21

Unique Identifiers
LOCKSS software consistently names all harvested content with the exact URL from which it
was collected. This applies both internally (within an AIP) and externally (in a SIP and a DIP).
Multiple versions of content collected from the same URL are disambiguated using the time of
collection.

Validation
Validating ingested content has two aspects. First, there is a validation that the LOCKSS or
CLOCKSS box has collected everything that the publisher made available. The set of files the
LOCKSS box will collect is controlled by a set of crawl rules created specifically for the
publisher’s site, part of what is called the” LOCKSS plug-in” for that site, and by the publisher’s
manifest page. The release process for the plug-in includes rigorous tests including auditing the
set of files collected from the publisher’s site. Failure to collect files specified by the rules
generates an alert to the host institution.

A second and more difficult validation is whether the publisher has made everything available
that was published. The LOCKSS team is developing techniques to perform this validation,
using the crawler’s ability to find all user-visible URLs, OAI-PMH queries and other sources of
information.

Finally, a correctness determination is based on integrity checks of what LOCKSS collected
versus what is available on the publisher’s Website and other LOCKSS boxes. Differences are
resolved by re-crawling the publisher’s site; any difference that cannot be resolved in this way
generates an alert to the host (participating) institution.

Metadata Capture
As a proxy Web cache system, LOCKSS is not designed to be an independent repository with
searchable content. As such, the types and extent of metadata captured differs from traditional
digital preservation repository implementations.

Descriptive metadata in the LOCKSS system consists of the URLs at which the information was
originally published, and the searchable information they contain including metadata and the full
text, all provided directly by the publisher. Information such as title, publisher, date, subject,
coverage, etc., is collected within the “LOCKSS core metadata.” (See analysis at
http://dlibcenter.iei.pi.cnr.it/Metadatadictshort22703%20a4.pdf). Other descriptive information

21 Email from David Rosenthal.

25

http://dlibcenter.iei.pi.cnr.it/Metadatadictshort22703%20a4.pdf

may be compiled and made available to local OPACs, but that responsibility falls to the local
implementers. LOCKSS is not a searchable system, but a proxy replacement server to the
content normally provided via the publishers’ Websites.

LOCKSS does capture some representation information. Defined as all of the additional
information (metadata) required to convert bit sequences into more meaningful information,
LOCKSS relies on its browser-renderable design to determine what is collected and recorded in
the Archival Information Packages (AIPs). Renderability from LOCKSS boxes relies upon a
browser (which renders known file formats), so LOCKSS does capture and record MIME type,
as well as package the LOCKSS browser plug-in API into the SIP. Other types of detailed file-
level representation information are not recorded or utilized within the LOCKSS system.

3.3.3.4 Archival Storage
Archival storage functionality is partially defined within LOCKSS software capabilities, as well
as the PC and network environment on which a LOCKSS box resides.

Internally, the LOCKSS system stores content in a repository defined by a set of Java classes.
The AIP consists of instances of these classes, representing the content itself, metadata obtained
from the publisher manifest page and the HTTP headers, and an instance of a Java class
implementing the LOCKSS plug-in API encapsulating metadata not obtained from these sources.
This instance is normally driven by externalized metadata in the form of XML files.

Physical archival storage capability within the PC is determined by the size and processing
capacity of the device. As mainly text-based and small image files at this time, a LOCKSS box
can start as small as 250 Gb. This is a vast difference from the multi-terabyte servers in use in
full digital preservation repositories. It is important to underscore that the LOCKSS software
can support both parallel ATA (PATA) drives and serial ATA (SATA) in native mode to allow
for increases in storage size, but does not support the use of RAID.

3.3.3.5 Preservation Planning (Strategies)
General
The LOCKSS team has chosen to incorporate and address preservation strategies in several
ways, including through the system design.

First, the LOCKSS approach deploys a large number of independent, low-cost computers with
persistent Web caches that cooperate to detect and repair damage by voting in “opinion polls” on
their cached document. This is the truest application of the “Lots of Copies Keeps Stuff Safe”
principle. Low-cost computers can fail, but the LOCKSS software polling system would detect
this and alert local institutions to their problem. Once replaced, the LOCKSS software
communicates with other LOCKSS boxes to replace the content which had previously been a
part of the auditing/polling circle. This ensures that only authorized content is reloaded in the
even of damage detection or replacement.

Secondly, LOCKSS controls preservation complexity by controlling formats ingested. LOCKSS
is designed to work with certain kinds of content. Specifically, it works for content that is

26

available on the Web and renderable through a browser. At the time of collection, the content
harvested as the SIP is sufficient for a browser to render the content; because it is collected in
exactly the same way that a browser would access it. The LOCKSS system's DIP replicates the
SIP exactly by acting as a proxy for the original SIP to the Designated Community, so the
information preserved is independently understandable (i.e. can be rendered in any browser
without the need for user intervention).

Migration of AIPs is not a part of the LOCKSS functionality. Instead, LOCKSS will incorporate
a migration upon access strategy for the long-term rendering of the bits preserved in LOCKSS
boxes. This migration on access strategy was demonstrated in a proof-of-concept project in 2005
though a series of APIs need to be created and maintained to enable links to known format
converters to enable to conversion on the fly capability.

Because of the nature of LOCKSS content, these strategies seem appropriate. It would be
advantageous for LOCKSS to enable linking to international format registries when these are
available. The LOCKSS team has agreed, however, to consider incorporating functionality with
emerging format registries that provide links to registered format converters, when such
registries are available for production use, potentially saving time and the expense of other
potential solutions.

3.3.3.6 Data Management (Metadata, Logs, etc.)
Management of Files
The LOCKSS software creates and records an extensive list of process logs. For purposes of
management and storage, some of the most important logs generated as related to LOCKSS box
polling. Logs with large numbers of poll requests from previously unknown peers might lead to
potential attackers who should be blacklisted from the network polling. Logs and alerts also
enable local LOCKSS administrators to identify, determine, and remedy potential problems with
local content caches.

Some logs/statistics are managed at the network level, but each LOCKSS box logs all its own
activities locally. Access denials to the dissemination and management interfaces are logged
through the logs that are currently preserved for a limited period. LOCKSS is working to provide
usage and content delivery statistics to LOCKSS box administrators although this was not yet
fully implemented at the time of audit.

Metadata
LOCKSS collects a minimal amount of descriptive and technical metadata associated with the
content. This metadata is “packaged” as a component of SIP and maintained in the AIP. This
information is described in 2.3.3.3, Data Deposit and Ingest: Metadata.

Fixity
LOCKSS software implements content cache fixity through the mutual auditing protocol which
supplies regular assurance that the content agrees with other replicas. Regular hash checks do
not occur on individual boxes, but take place within the network polling. Since the “fixed”
content for any title or Archival Unit is the same on all LOCKSS boxes (as harvested from the
publisher’s Website), this fixity is the same for all LOCKSS box AU instances (caches).

27

3.3.3.7 Access Management
Accessible content
The LOCKSS system disseminates information locally by acting as an HTTP proxy, making it
appear to users that the SIP is still available from its original URLs (with any changes required
by preservation operations such as format conversion).22 The entire SIP, including the publisher
manifest page with its metadata, is available.

Access Management Functionality
The LOCKSS software implements the strict access requirements agreed to by publishers and the
libraries subscribing to the publisher’s content and caching that content on various LOCKSS
boxes. LOCKSS boxes do not implement “LOCKSS-wide” access in the case of publisher
failure. In fact, caching rights are determined by institutional subscriptions with publishers. If
an institution has a subscription to a publisher’s content, it is able to cache that content on a
LOCKSS box. In the event of any of the specified trigger events, those subscribing institutions
with LOCKSS boxes would be able to provide their own communities authorized access to their
local copies of the content.

3.3.3.8 Business Continuity, Environmental Management, and Disaster Planning
LOCKSS is a highly decentralized repository system. While LOCKSS was designed to support
business continuity to the e-journals offered on the publisher Websites, all other aspects of
business continuity are applicable only at a local level, not at the broader network or LOCKSS
Program level.

Environmental management issues and disaster planning responsibilities also occur at the local
institution level.

22 LOCKSS and OAIS: Formal statement of conformance to ISO 14721:2003. <http://www.lockss.org/lockss/Oais>

28

 3.3.4 Vulnerabilities

3.3.4.1 Significant Repository Events
Publications by Reich and Rosenthal reveal detected failures at certain levels of the system over
the last few years. These include failures related to ingest, disk storage, and the local PCs. That
being said, the system proved its capability of recovery from such failures, owing to the
distributed nature of the collection (available directly from publisher sites) and the design
principles behind the LOCKSS Program and LOCKSS software. Multiple instances of the same
content allowed for polling and identification of failure points, and permitted recovery of full
archived content from system participants.

3.3.4.2 Threats and Liabilities
While LOCKSS has competently addressed the issues of system design, functionality and
security an important question raised by the audit was the financial sustainability of the LOCKSS
Program and the LOCKSS Alliance. Although the fee-based membership Alliance was formed
to provide stability and financial support for the LOCKSS Program, at the time of the audit it had
yet to reach a level sufficient to put the program on a sound economic footing. To support the
ongoing costs of LOCKSS’ dedicated support and developmental staff and continued negotiation
of new agreements with publishers to increase LOCKSS-compatible content, LOCKSS
membership revenue will have to grow well beyond its 2006 level.

While a key component of the LOCKSS business plan has been the development of a supportive
Open Source community to assist with further technology development and support, a
community sizable enough to do so has yet to materialize. Should the LOCKSS Program cease
to exist, content archived to that point, however, will still remain available on the distributed
LOCKSS boxes, but less tech-savvy institutions would likely be incapable of continuing to
manage that content.

LOCKSS recently reported, however, that in 2007 the Alliance generated sufficient income to
“cover all the LOCKSS-related activities of the Stanford team.” If true, this would indicate that
LOCKSS has become self-sustaining, independent of grants and other soft money subsidies, a
very promising development.

29

3.3.5 Final Observations and Recommendations

Overall, the LOCKSS software appears to be a solid technology enabling the preservation of a
range of digital materials, although adopting institutions should be aware that LOCKSS
technology is not a panacea for preserving all types of digital content. That being said, for the
content it currently targets – Web-delivered e-journals and some Web site content– it has proved
capable of providing persistent access to collections within LOCKSS boxes and the broader
LOCKSS networks.

The concept behind LOCKSS – a collaborative partnership enabling digital preservation – is one
of its strong points. As an inexpensive implementation (less than $3000 per instance, in general,
including hardware costs), it also enables smaller institutions to combine resources and begin to
preserve fragile, born digital content in a way they would otherwise be incapable of
accomplishing.

In using LOCKSS to preserve e-journal content LOCKSS is distinguishable from other e-journal
archiving solutions in another respect: the content is kept and maintained locally. Institutions
can use LOCKSS to provide perpetual access to licensed content in a way that would enable an
immediate and seamless transition, continuing user access – even on a temporary basis – in the
event that content became unavailable from the publisher. Other options such as the Portico e-
journal archiving service and the Koninklijke Bibliotheek’s e-journal archive in their e-Depot
have agreements with publishers which preclude access to their archived content unless
significant trigger events occur. Even after a significant trigger event occurs, opening access
through these other services requires a waiting period and notification of publishers prior to
opening the archives. Since both of these services provide a “once opened, always opened”
clause, the negotiation to open the archive services may be protracted, prohibiting user access to
content for a significant period of time. From a user perspective, quick access through a local
LOCKSS box proxy server seems like a preferable arrangement.

Because LOCKSS and private LOCKSS networks are becoming more important to the adopting
institutions, the absence of solid, sustainable funding to keep the LOCKSS Program and
LOCKSS software development ongoing is troubling. The development of the LOCKSS
Alliance has created the foundation for a sustainable business model, and LOCKSS reports that
in 2007 it realized adequate revenue to cover all of the LOCKSS maintenance and development
costs of the Stanford team. It was not possible during our audit, however, to independently
determine the financial status or condition of the LOCKSS program.

30

	1 Summary Statement
	2 Executive Summary
	3 Full Report
	3.1 Introduction
	3.1.1 LOCKSS system & background
	3.1.2 LOCKSS Philosophy
	3.1.3 Organizational Structure (Brief Overview)
	3.1.4 Technical Architecture (Brief Overview)

	 3.2 Objectives, Scope, & Methodology
	3.2.3 Standards against Which the Audit Was Completed

	 3.3 Findings
	3.3.1 Organizational Analysis
	3.3.1.1 Governance
	3.3.1.2 Staff
	3.3.1.3 Policies and Procedures
	3.3.1.4 Financial Analysis
	3.3.1.5 Contracts (Submission Agreements) & Licenses
	3.3.1.6 Succession Planning

	3.3.2 Content Analysis
	3.3.2.1 Logical and Physical Content
	3.3.2.2 Extent of Content
	3.3.2.3 Usability of the Content
	3.3.2.4 Link Management Solutions
	3.3.2.5 Termination of Service Policy
	3.3.2.6 Threats to Content

	 3.3.3 Technical Analysis
	3.3.3.1 Architecture
	3.3.3.2 Data Security (Access Controls)
	3.3.3.3 Data Deposit & Ingest
	3.3.3.4 Archival Storage
	3.3.3.5 Preservation Planning (Strategies)
	3.3.3.6 Data Management (Metadata, Logs, etc.)
	3.3.3.7 Access Management
	3.3.3.8 Business Continuity, Environmental Management, and Disaster Planning

	 3.3.4 Vulnerabilities
	3.3.4.1 Significant Repository Events
	3.3.4.2 Threats and Liabilities

	 3.3.5 Final Observations and Recommendations

